500 research outputs found

    Rotating space station simulator Patent

    Get PDF
    Artificial gravity system for simulating self-locomotion capability of astronauts in rotating environment

    Development of a nonlinear switching function and its application to static lift characteristics of straight wings

    Get PDF
    A mathematical modeling technique was developed for the lift characteristics of straight wings throughout a very wide angle of attack range. The technique employs a mathematical switching function that facilitates the representation of the nonlinear aerodynamic characteristics in the partially and fully stalled regions and permits matching empirical data within + or - 4 percent of maximum values. Although specifically developed for use in modeling the lift characteristics, the technique appears to have other applications in both aerodynamic and nonaerodynamic fields

    Exploratory tests of a simple aero-mechanical ride comfort system for lightly loaded aircraft

    Get PDF
    Some exploratory wind tunnel and radio-controlled free-flight tests were made with a small high-wing airplane model (1.23m wing span) to study the concept of a simple aero mechanical system intended to alleviate gust loads and improve ride comfort of lightly loaded aircraft. The system consisted essentially of the outer portions of each wing being hinged in the chordwise direction and connected directly to the wing flaps using internal counter weights to provide neutral mass balance. When the wing experienced a change in velocity or angle of attack, the movable wing panels, acting as sensors and flap actuators, deflected in response to the changes in lift on the wing. The corresponding movements of the interconnected flaps tended to reduce the changes in the wing lift

    The foot-controlled maneuvering unit: Summary report on Skylab experiment T-020

    Get PDF
    Skylab experiment T-020 was conducted to study the maneuvering capabilities of astronauts using a relatively simple experimental self-locomotive device, referred to as the foot-controlled maneuvering unit, and to evaluate the effectiveness of ground-based facilities simulating the operation of this device in weightless conditions of space. The final results as presented of this experiment which includes comparison of the tests performed during missions SL-3 and SL-4 of the Skylab with those performed on the simulators. Some of the results of this experiment and those of Skylab experiment M509, which employed an experimental hard-controlled maneuvering unit, are discussed in terms of the development of a possible future operational maneuvering system

    Premission and postmission simulation studies of the foot-controlled maneuvering unit for Skylab experiment T-020

    Get PDF
    A Skylab experiment was conducted to study the maneuvering capabilities of astronauts using a relatively simple self-locomotive device, referred to as the foot-controlled maneuvering unit, and to evaluate the effectiveness of ground-based facilities simulating the operation of this device in weightless conditions of space. Some of the special considerations given in the definition and development of the experiment as related to the two ground-based simulators are reviewed. These simulators were used to train the test subjects and to obtain baseline data which could be used for comparison with the in-flight tests that were performed inside the Skylab orbital workshop. The results of both premission and postmission tests are discussed, and subjective comparisons of the in-flight and ground-based test conditions are presented

    Reduced gravity simulator Patent

    Get PDF
    Cable suspension and inclined walkway system for simulating reduced or zero gravity environment

    Gust alleviation system to improve ride comfort of light airplanes

    Get PDF
    System consists of movable auxiliary aerodynamic sensors mounted on fuselage and connected to trailing-edge flaps by rigid mechanical linkages. System achieves alleviation by reducing lift-curve slope of airplane to such a small value that gust-induced angles of attack will result in small changes in lift

    Technique simulates effect of reduced gravity

    Get PDF
    To simulate the effects of lunar gravity, an arrangement of near-vertical cables has been devised. These suspend the test subject perpendicular to an inclined walkway to give the effect of reduced gravitational pull

    Natural iron enrichment around the Antarctic Peninsula in the Southern Ocean

    Get PDF
    As part of the US-AMLR program in January-February of 2006, 99 stations in the South Shetland Islands-Antarctic Peninsula region were sampled to understand the variability in hydrographic and biological properties related to the abundance and distribution of krill in this area. Concentrations of dissolved iron (DFe) and total acid-leachable iron (TaLFe) were measured in the upper 150 m at 16 of these stations (both coastal and pelagic waters) to better resolve the factors limiting primary production in this area and in downstream waters of the Scotia Sea. The concentrations of DFe and TaLFe in the upper mixed layer (UML) were relatively high in Weddell Sea Shelf Waters (~0.6 nM and 15 nM, respectively) and low in Drake Passage waters (~0.2 nM and 0.9 nM, respectively). In the Bransfield Strait, representing a mixture of waters from the Weddell Sea and the Antarctic Circumpolar Current (ACC), concentrations of DFe were ~0.4 nM and of TaLFe ~1.7 nM. The highest concentrations of DFe and TaLFe in the UML were found at shallow coastal stations close to Livingston Island (~1.6 nM and 100 nM, respectively). The ratio of TaLFe:DFe varied with the distance to land: ~45 at the shallow coastal stations, ~15 in the high-salinity waters of Bransfield Strait, and ~4 in ACC waters. Concentrations of DFe increased slightly with depth in the water column, while that of TaLFe did not show any consistent trend with depth. Our Fe data are discussed in regard to the hydrography and water circulation patterns in the study area, and with the hypothesis that the relatively high rates of primary production in the central regions of the Scotia Sea are partially sustained by natural iron enrichment resulting from a northeasterly flow of iron-rich coastal waters originating in the South Shetland Islands-Antarctic Peninsula region

    Bioactivity and structural properties of chimeric analogs of the starfish SALMFamide neuropeptides S1 and S2

    Get PDF
    The starfish SALMFamide neuropeptides S1 (GFNSALMFamide) and S2 (SGPYSFNSGLTFamide) are the prototypical members of a family of neuropeptides that act as muscle relaxants in echinoderms. Comparison of the bioactivity of S1 and S2 as muscle relaxants has revealed that S2 is ten times more potent than S1. Here we investigated a structural basis for this difference in potency by comparing the bioactivity and solution conformations (using NMR and CD spectroscopy) of S1 and S2 with three chimeric analogs of these peptides. A peptide comprising S1 with the addition of S2's N-terminal tetrapeptide (Long S1 or LS1; SGPYGFNSALMFamide) was not significantly different to S1 in its bioactivity and did not exhibit concentration-dependent structuring seen with S2. An analog of S1with its penultimate residue substituted from S2 (S1(T); GFNSALTFamide) exhibited S1-like bioactivity and structure. However, an analog of S2 with its penultimate residue substituted from S1 (S2(M); SGPYSFNSGLMFamide) exhibited loss of S2-type bioactivity and structural properties. Collectively, our data indicate that the C-terminal regions of S1 and S2 are the key determinants of their differing bioactivity. However, the N-terminal region of S2 may influence its bioactivity by conferring structural stability in solution. Thus, analysis of chimeric SALMFamides has revealed how neuropeptide bioactivity is determined by a complex interplay of sequence and conformation
    • …
    corecore